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Animals in groups touch each other, move in paths that cross, 
and interact in complex ways. Current video tracking methods 
sometimes switch identities of unmarked individuals during 
these interactions. These errors propagate and result in random 
assignments after a few minutes unless manually corrected. 
We present idTracker, a multitracking algorithm that extracts a 
characteristic fingerprint from each animal in a video recording 
of a group. It then uses these fingerprints to identify every 
individual throughout the video. Tracking by identification 
prevents propagation of errors, and the correct identities can  
be maintained indefinitely. idTracker distinguishes animals 
even when humans cannot, such as for size-matched siblings, 
and reidentifies animals after they temporarily disappear from 
view or across different videos. It is robust, easy to use and 
general. We tested it on fish (Danio rerio and Oryzias latipes), 
flies (Drosophila melanogaster), ants (Messor structor) and  
mice (Mus musculus).

Owing to its high temporal and spatial resolution, video tracking 
is the main method used in the laboratory to track animals in a 
group. Tracking systems can follow marked animals in groups for 
long times1,2, but marking is sometimes invasive and can modify 
behavior3,4. When animals are not marked, extracting the track 
of each animal has proven a difficult problem. The source of the 
difficulty is that when two or more individuals cross or touch, it 
can be very difficult to find the correct identities after the point of 
overlap (Fig. 1a). Current animal multitracking systems calculate 
the most likely assignment of identities by taking into account 
the movement of the animals before and after an overlap5. Some 
of these systems incorporate image processing techniques to  
separate the images of the individuals when the overlaps are 
small6–8 or use species-specific shape models that can help to 
resolve more complex crossings8–12. Some systems use several 
cameras for three-dimensional (3D) tracking, with the advantage 
of a smaller proportion of crossings in which the animals overlap 
simultaneously for all cameras12–14.

Current methods sometimes assign incorrect identities after a 
crossing. Even with very low error rates, all animals get random 
labels after some time because each identity swap in a crossing 
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is an error that propagates to the rest of the video. We illustrated 
this for a video of eight zebrafish and a simulated tracking system 
that correctly solves 99% of crossings (Fig. 1b). After just 2 min, 
trajectories had only 11% correct identities. These methods can-
not provide labeled trajectories automatically; human operators 
must review each crossing—a large manual effort8,11,15.

We have developed idTracker, a software that tracks each animal 
in a group and maintains the correct identities (Supplementary 
Video 1 and Supplementary Software; latest software update 
available at http://www.idtracker.es/). Its methodology is distinct  
from previous approaches in that idTracker extracts from the 
video a signature or fingerprint for each individual (Fig. 1c). 
These fingerprints are used to identify individuals in each frame, 
keeping the correct identities even after crossings or occlusions 
(Fig. 1d). Trajectories are then obtained by joining the centers of 
the labeled individuals, and an additional algorithm estimates the 
position of individuals in the regions in which animals overlap. 
In this way we obtain trajectories with, on average, 99.7% cor-
rect identities (Fig. 1e; validation against human). The algorithm 
works for nearly identical individuals, including size-matched 
unmarked siblings and animals from inbred populations. It works 
well despite the variability in animal postures and even in cases 
when the human visual system cannot perform the identification 
task. The method is 100% automatic and does not suffer from 
propagation of errors, giving reliably correct identities even for 
long videos and any complexity of crossings. It is easy to use, 
needing no modifications for different species (only three param-
eters must be input by the user; see Supplementary Note 1).

RESULTS
Identification in idTracker
The core of idTracker consists in automatically finding a fin-
gerprint for each animal that enables identification through-
out the video data (Supplementary Note 2). The first step 
is to extract from the video a set of reference images for each 
animal. This is done by finding portions of the video in which 
all individuals are separated. The portion of the video obey-
ing this condition is usually short, as it finishes when any two 
individuals cross, but the remaining separated individuals can  
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continue to be used until each has crossed with another. We thus 
obtain a larger number of reference images for generating the  
fingerprint of each individual (Fig. 2a). Usually this portion of 
video is still too short to gather enough reference images, espe-
cially for species for which crossings are frequent. To increase 
the number of reference images, the software finds more of 
these portions of video. It then matches the different portions by  
aggregating the images that can be assigned with very high prob-
ability to the same individual. (Supplementary Note 2). At the 
end of this step, each animal is characterized by a reference set of 
images with different postures (Fig. 2b).

Once the reference images are collected, we identify the remain-
ing images in the video, which we call ‘problem images’, by com-
paring them to the references. To perform this comparison,  
we first transform all images to obtain a clear fingerprint for each 
animal. For each image of an animal (Fig. 2c), after segmenta-
tion we obtain the intensities of every pair of pixels (i1 and i2) 
and the distance between them (d) (Fig. 2d). This transforms 
the image into a set of points in the 3D space (d, i1, i2), known as 
the color correlogram of the image16. To increase computational 

efficiency while keeping enough structure for identification,  
we chose to instead transform the image to the 2D space (d, i1 + i2).  
We then obtain an ‘intensity map’, which is the histogram in this 
2D space (Fig. 2e), and, similarly, a ‘contrast map’ for the space  
(d, |i1 − i2|) (Fig. 2f). These maps give a characteristic fingerprint for  
each animal (note that it is much easier to distinguish by eye the 
maps of different individuals in Fig. 2g than the original images 
in Fig. 2b). The maps are invariant under translation and rotation, 
as only intensities and Euclidean distances are used, and robust 
with respect to changes in posture, as each animal is defined by a 
reference set with different postures.

The assignment of every problem image to an individual is 
now done by comparing its intensity map to those of each ref-
erence set (Fig. 2g). To compare two maps, we subtract them 
element by element and compute the mean of the absolute val-
ues of these differences. Using this metric, we find the reference 
intensity map most similar to the problem intensity map, and we 
assign the problem image to the corresponding individual. We do 
the same for the contrast maps, and if the intensity and contrast 
maps give contradictory assignments, the assignment is declared 

Figure 1 | idTracker maintains correct  
identities without propagation of errors.  
(a) Silhouettes of two zebrafish whose 
trajectories cross. If the tracking system 
switches the identities during the crossing,  
the error propagates to the rest of the video.  
A few mistakes then lead to a random 
assignment. Indiv., individual. (b) Trajectories 
of eight zebrafish (x and y axes are the sides 
of the setup; z is time) obtained by simulating 
an algorithm that solves 99% of the crossings 
correctly. We simulate the error rate by starting from the correct trajectories (validated manually) and switching two identities with a probability  
of 1% in every crossing. Colors represent correct identities and black represents wrong identity, as compared to that assigned by a human observer.  
(c) Illustration of our method: instead of resolving the crossing, we extract a characteristic fingerprint (insets) that characterizes each individual.  
(d) Same as a, with colors representing the identities assigned using the fingerprints. Black indicates that no identification could be performed:  
for example, when fish overlap. An identification error in one frame (for example, the black frame in the middle of the top purple trajectory could not  
be identified reliably) does not affect neighboring frames, so errors do not propagate. (e) Same as b, but showing the results of idTracker. Short errors 
may occur (they are too short to be seen at this resolution), but they do not propagate.

Figure 2 | Identification method.  
(a) Fragments of trajectories for eight  
zebrafish between consecutive crossings,  
used to obtain reference images for each  
animal. x and y axes are the sides of the  
setup; z is time. Black crosses mark the  
points at which animals cross. The gray  
portion corresponds to the period in  
which all animals are separated. (b) Set  
of reference images that characterize each  
individual. (c) Example of image of one  
zebrafish. (d) Segmented image. We highlight  
two pixels with intensities i1 and i2 separated  
by a distance d. (e) Intensity map of the  
image in d, which is a 2D histogram showing  
how many pairs of pixels are at a given  
distance and have a given sum of intensities.  
(f) Contrast map of the image in d. It is the  
same as the intensity map in e but using the 
absolute value of the difference of the intensities instead of the sum. (g) Illustration of the identification of one problem image: the numbers are the 
minimum distance between the intensity map of the problem image (bottom) and the intensity maps of the reference images for each individual (top). 
The problem image is assigned to the individual with the closest map (fish 7 in this case). (h) Silhouettes of two zebrafish as they travel between two 
consecutive crossings. Colors represent the identification of each image. (i) Same as h, but colors now represent the overall identification of the whole 
fragments of trajectories between the two crossings.
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ambiguous. In order to increase the certainty of identifications, 
we aggregate the information of all images that belong to the 
same individual while it moves without crossing with any other 
individual. This aggregation is an important part of the track-
ing system: even when some images are incorrectly identified or  
cannot be assigned (Fig. 2h), the final assignment of frag-
ments (Fig. 2i) typically has a high probability of being correct. 
Trajectories joining the centers of the identified animals would 
leave gaps in the regions with animal crossings. We fill these gaps 
using an algorithm that estimates the position of each animal 
starting from the identified images before and after the cross-
ing and working toward its center (Supplementary Note 2). The 
output of the system includes the trajectories and an estimation 
of the probability that each frame is correctly assigned. This out-
put indicates which portions correspond to estimated positions  
during animal overlaps so that users can decide whether to include 
them, depending on the characteristics of the analysis.

Validation against human performance
To test the performance of idTracker under laboratory conditions, 
we applied it to 23 videos of five different species (Supplementary 
Table 1): mice (M. musculus) (Fig. 3a); fruit flies (D. melanogaster) 
(Fig. 3b); zebrafish (D. rerio) from above (Fig. 3c) and from the 
side (Fig. 3d); a zebrafish strain that is transparent owing to a 
nacre mutation17 (Fig. 3e), for which eyes and internal organs 
are enough for identification; a WIK line of zebrafish inbred for 
five cycles; ants (M. structor); and medaka fish (O. latipes). We 
manually validated identifications in portions of video with no 
animal overlaps and found a mean performance of 99.8% correct 
trajectories and no error propagation. Mistakes occurred only 
when the distance between two consecutive crossings was very 
short (typically shorter than one body length; Supplementary 
Note 3). Different species displayed different proportions of video 
with image overlaps (from 1% in medaka to 20% in some of our 
videos of mice). We also performed manual validation during 
animal overlaps, finding that the estimated position is inside the 
body of the animal in 96.5% of the trajectories on average. The 
mean performance for the complete videos, including all por-
tions with and without overlaps, was 99.7% trajectories correct 
(99.7%, >99.9%, 99.3%, >99.9% and 99.8% for zebrafish, flies, 
mice, medaka and ants, respectively; each percentage is averaged 
across all videos of each species).

We further tested that the system maintains its performance for 
common laboratory conditions and manipulations. In cases in 
which animals disappeared from view because they were occluded 
by objects or because they left the camera’s field of view, idTracker 
kept the correct identities before and after they disappeared—for  

the software these events are identical to animal overlaps (Fig. 3f).  
It was robust to manipulations in the middle of a video, both to 
additional occlusions (Fig. 3g) and to small changes of the ani-
mals due to handling (Supplementary Note 3). We also found 
that the system was robust to modification of behavior in the 
middle of an experiment (Supplementary Fig. 1). Additionally, 
we validated that references obtained in one experiment could be 
used for several days, allowing identification of individuals across 
different videos (Fig. 3h and Supplementary Fig. 2). For these 
capabilities, our system outperformed not only state-of-the-art 
methods but also human operators, as they are unable to make 
such identifications.

In contrast to humans, idTracker finds a signature for each ani-
mal using a very distributed representation of their images, taking 
into account relations between pixels that are at any distance from 
each other. Humans typically focus on more local features, which 
might explain why idTracker outperforms humans; moreover, 
individual animals may have some particular local features that 
are found by idTracker but cannot be distinguished by humans. 
To search for these possible features, we studied which pixels were 
helping idTracker most in the identification. We found that most 
pixels contributed positively to identifications and that the pattern 
of contribution was different for different images, even if these 
images belonged to the same individual (Supplementary Note 4). 
This is consistent with the idea that the distinguishing elements 
are not local but distributed.

Finally, we evaluated how well the program estimates the  
tracking quality. We artificially deteriorated some videos and 
found that in all cases the program distinguished good from 
bad performance. We also checked that the estimated frame-by- 
frame probability was a good indicator of the actual probability 
of correct identity (Supplementary Fig. 3).
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Figure 3 | Examples of applications of idTracker. (a–e) Frame of a  
video, with the trajectories provided by idTracker, of mice (a), fruit  
flies (b), wild-type zebrafish recorded from the top (c) and side (d), 
and nacre mutant zebrafish (e). (f) Same as a, for a video of wild-type 
zebrafish in which a black roof occludes a portion of the setup. (g) Three 
frames of a video of zebrafish in which a hand waves in front of the 
camera, disrupting the tracking for some time (center). All individuals 
keep their correct identities before (left) and after (right) the disturbance. 
(h) Frames of two different videos of the same ten medaka fish recorded 
on different days. The thin colored lines connect the same individual 
(indiv.) in both videos. Scale bars, 5 cm (a,c,d,f–h) and 1 cm (b,e).  
See also Supplementary Video 1.
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Conditions for the system
Setups for idTracker are easy to build and inexpensive. It runs  
on personal computers (minimum 8 gigabytes (GB) random access 
memory (RAM)) with a computation time of 0.5–2 s per frame for 
the videos tested in Supplementary Table 1, with 0.5 s per frame 
for a video of two nacre mutant zebrafish and 2 s per frame for a 
video with 20 medaka fish. idTracker can analyze videos obtained 
with a regular camera that records either in uncompressed for-
mat or with high-quality compression (many modern consumer  
video cameras meet this requirement).

Resolution must be high enough to allow identification of 
the animals. Our validations used at least 150 pixels per ani-
mal (Supplementary Table 1), corresponding to arenas with 
sides of 15–25 body lengths, and a camera with resolution of  
1,080 × 1,080 pixels. We also studied the limits of the system by 
resampling some of the videos at lower resolutions. We found 
for flies, zebrafish and mice that the system had good perform-
ance down to 50 pixels (Supplementary Fig. 4). But the limit  
will depend on the conditions of the video, and in general we 
recommend using at least 150 pixels per animal.

The system requires homogeneous illumination but is robust 
to small inhomogeneities. Strong inhomogeneities may degrade 
the tracking at least in one region of the setup (Supplementary 
Fig. 5). Also, animals should have enough contrast against the 
background to make their segmentation possible (as in Fig. 3).

The maximum number of animals we have tracked as a group 
is 20, but this number depends on species and conditions. 
Using images of individuals from several videos, we estimate 
very small deterioration of identifications for up to 35 animals 
(Supplementary Fig. 6). Extrapolation from these results sug-
gests good performance also for larger numbers. Therefore, 
the limiting factor for tracking a high number of animals is not 
identification. Instead, the practical limit is currently imposed 
by the way in which the method extracts references, which can 
be compromised at high densities if crossings are ubiquitous.  

Extracting references also requires a minimum length for the 
video: for the cases tested, at least 5 min and typically 30 min.  
For tracking a very high number of animals or for very short 
videos, it is possible to obtain references in separate videos of 
subgroups of the animals and/or of longer duration.

The program automatically estimates the quality of the out-
put and warns the user when the estimation gives a low quality.  
Users can use this estimate to confirm the validity of their experi-
mental conditions.

Applications to the study of group behavior
Despite the growing interest in group behavior15,18–26, its study  
in the laboratory has met with the difficulty of tracking individu-
als in groups. To illustrate how idTracker can overcome these dif-
ficulties, we used it to study three different problems: spontaneous 
emergence of territoriality, stability of leadership hierarchies, and 
differences among individuals of a group when solving a task  
(raw data and scripts in Supplementary Data).

Taking advantage of idTracker’s ability to maintain individual 
identities indefinitely, we studied groups of adult zebrafish for  
3 h. The fish shoaled at the beginning, together visiting the entire 
tank. Afterwards, each animal covered different parts of the tank, 
and after 3 h, their territories were very different (Fig. 4a). Thanks 
to the ability to track with correct identities for any length of time, 
it is possible to identify nonstationary aspects of behavior such as 
this spontaneous switch from shoaling to territorial behavior.

idTracker also allowed us to study whether each animal consist-
ently showed the same type of interactions with other members of 
the group in different trials. Using a video of ten medaka fish, a 
species that shows very clear group structure, we studied the net-
work of leadership-followership relations (in each pair a follower 
is defined as the one with more tendency to copy the velocity 
vector of the other26; Online Methods). We found a hierarchical 
structure of leadership-followership relations (Fig. 4b). idTracker 
reidentified the individuals in another two videos of the same ten 
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Figure 4 | Analysis of social behavior using idTracker.  
(a) Probability of presence at each point of the setup for  
each individual in a group of five zebrafish at the beginning  
of the experiment (left) and 3 h later (right). Color indicates  
identity; higher opacity represents higher probability. Lines  
encircle the region where the individual spent 90% of its time.  
(b) Leadership hierarchies in medaka fish. Each circle represents  
one individual. An arrow from A to B means that B follows A.  
Higher vertical position corresponds to stronger leadership,  
computed as average delay of each individual with respect to  
all other individuals. (c) Stability across trials (s) for 10,000  
randomizations of the three trials. We compute the P value as  
the proportion of randomizations with higher stability than that of the experimental (Exp.) data (arrow). (d) Strength of leadership versus probability 
of being at the front, for all pairs in the group of ten medaka fish. (e) Frame illustrating one trial of a food-finding task in zebrafish, with colors 
representing identities. Silhouettes on the top indicate order of arrival. Upon reaching a threshold (red arc), a fish is considered to have arrived at the 
food. (f) Order of arrival for each trial for two of four total groups, one group with consistent order (left) and another compatible with random order 
(right). (g) Stability across trials for the four groups (blue dots). The black gradient shows the distribution of s for random ordering (darker for higher 
probability). P value is computed as for c. Script and data to reproduce this figure are in the Supplementary Data.
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medaka fish 1 week later (days 8 and 9; see Online Methods for 
the algorithm to match identities across different videos). The 
structure was preserved for many of the individuals across the 3 d  
(Fig. 4b). To test whether this result is significant, we defined a 
stability score (s) that is higher the more preserved the hierarchy is 
across trials, with a value of 1 when each individual has the same 
rank in all trials (Online Methods). We compared the stability 
score of the experimental hierarchies with 10,000 randomiza-
tions of the experiment, finding that the stability of the actual 
hierarchies was highly significant (P < 0.001; Fig. 4c and Online 
Methods). We also tested whether leaders occupied a particular 
position within the group: for each pair of fish, we selected one 
individual at random as a reference individual and computed a 
leadership score that increases with the strength of the leader-
ship of the reference individual on the other member of the pair 
(Online Methods). We found a very strong correlation between 
this score and the probability to find the reference individual in 
front of the other one, indicating that leaders tended to be at the 
front of the group (Fig. 4d; linear correlation P < 10−10).

We performed another set of experiments using groups of four 
zebrafish to study how a group solves a task, here locating a food 
patch (Fig. 4e). idTracker was used to obtain the tracks of the four 
animals, reidentifying them in each of the 12 trials. We performed 
the experiment with four different groups and studied the order 
of arrival to the food in each trial (Fig. 4f). We computed the 
same stability score (s) as for the hierarchies of medaka to meas-
ure how consistent the order of arrival was across several trials 
(Online Methods). We found a diversity of styles in the groups: 
two groups were highly ordered, and the other two had an arrival 
order compatible with the random case (Fig. 4f,g).

DISCUSSION
The development of idTracker has been possible because of four 
novel elements worth making explicit so as to consider future 
improvements. First, we have discovered that animals can be 
individually identified even when humans cannot perform this 
identification task. Previous tracking methods, probably copying 
the style in which humans track animals from video, attempted 
to follow animals in crossings but suffer from error propagation. 
After finding that animals could be distinguished, we needed 
three technical developments to obtain an effective tracking from 
a single video. One is the transformation of the image of each 
animal into a space in which animals can be easily identified, 
even for animals that change position and posture. Our inten-
sity and contrast maps are one way to do this, but it should be 
interesting to explore other local and distributed methods27–31, 
including methods that take advantage of characteristic features 
of some species, such as patterned skins31. A second technical 
development necessary to track animals from a single video is 
an automatic procedure to extract references for each animal. 
We developed a method to obtain a set of frames of the same 
individual in a way that prevents confusion with other individu-
als. This set of frames for each individual is used as a reference 
set with no need for extra videos for each individual. This algo-
rithm may be exported to other systems that use extra reference 
videos1. A third technical development is a system to aggregate 
the frame-by-frame assignations into a final global assignation, 
its corresponding trajectory and an estimation of the probability 
of having a globally correct assignment.

Currently the system uses only intensity information (color 
images are transformed to grayscale before processing). Color 
might be important for some conditions, both to facilitate seg-
mentation and to improve the quality of identification, but it will 
probably increase the computational load of the method. If we 
use the same rationale as for our maps, a color image with three 
channels will transform into a 7D space (three intensities per 
pixel of the couple, and the distance between them). In general, 
an efficient use of the color information will probably require 
a final space of higher dimensionality than the one we are cur-
rently using (either a higher number of 2D maps or higher- 
dimensionality maps). Another alternative is to automatically 
adapt the transformation to each video, depending on the type 
of color information relevant for identification.

Although we have developed idTracker to work for unmarked 
individuals, it can also be used to distinguish marked individuals. 
Markings may allow the system to track an even higher number of 
animals beyond the limit of video resolution and quality imposed 
by the small differences existing among unmarked animals. In this 
context, idTracker may contribute with two key advantages with 
respect to other systems developed for marked animals. First, it 
can distinguish marks that are smaller and more subtle, allowing 
for easier marking methods. Second, it automatically extracts the 
reference images from the video, whereas other systems require a 
separate video of each animal to learn the structure of marks1.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Tracking algorithm. idTracker is programmed in Matlab 2010a 
(The MathWorks), with some routines in C to increase compu-
tational speed. The following paragraphs give a brief summary of 
the main steps of the algorithm; see Supplementary Note 2 for a 
complete description of all steps and Supplementary Software 
for the full code (an updated version can be found at http://www.
idtracker.es/).

Segmentation. First, each frame is normalized to its mean inten-
sity to control for fluctuations of illumination. To distinguish 
animals from the background, we select blobs whose pixels 
have a normalized intensity below (or above) a certain thresh-
old and whose area is larger than a minimum size. An optional 
background removal routine computes the average image of the 
whole video and discards pixels that pass the threshold in the 
average image.

Fragments of trajectories. When an animal is moving without 
crossing with any other one, we group all its images into a ‘frag-
ment’ so that we can identify them together, increasing the cer-
tainty of the identification. To be sure that we only group images 
that belong to the same individual, we use a restrictive criterion: 
two blobs of consecutive frames belong to the same fragment if 
they overlap with each other and none of them overlaps with any 
other blob.

Transformation of images. Images are transformed into contrast 
and intensity maps as described in the main text (Fig. 2).

Selection of images that belong to a single individual. To distin-
guish blobs that belong to one individual from blobs that belong 
to several overlapping individuals and from noise, we extract 
a small collection of single-individual blobs from the video. 
To extract this collection we assume that if a frame contains a 
number of blobs equal to the number of individuals in the video, 
each of these blobs belongs to one individual. Then we compare 
the maps of all blobs with the collection of single-individual blobs 
as described in the main text (Fig. 2). Blobs whose difference 
with the collection is compatible with the differences within the 
collection are classified as single-individual blobs. We define 
single-individual fragments as those with a majority of single-
individual blobs.

Collection of reference images. First, we look for periods of time 
when all individuals are separated (there are simultaneously as 
many single-individual fragments as animals). Each of these peri-
ods provides us with a set of fragments, each of them belonging 
to one of the individuals. To aggregate several sets of fragments, 
we compare them pairwise. For each pair of sets of fragments, we 
use one of them as ‘reference set’ and identify all the blobs of the 
other set (‘problem set’) as described in the main text (Fig. 2). 
With these identifications we compute the probability that each 
of the fragments of the problem set belongs to the same indi-
vidual as each of the fragments of the reference set (probability 
P2 in Supplementary Note 2). To increase the certainty of the 
relations, we use the fact that they must be consistent: If we have 
three sets of fragments, the relations of identities between sets 
one and two and sets one and three determine a unique relation 

between sets two and three. Using this fact we compute an aggre-
gated probability (P3 in Supplementary Note 2). Because there 
are typically several dozens of sets of fragments, this aggregated 
probability gives very certain assignments, even when each indi-
vidual pairwise comparison may not be very reliable. We aggre-
gate all sets of fragments that can be linked with error probability 
lower than 10−5, up to a maximum number of reference images  
(typically 3,000).

Identification. We compare each blob with the reference images, 
as described in the main text (Fig. 2). We then aggregate the iden-
tifications of all blobs of the same fragment, computing the prob-
ability for each identity for that fragment (P1 in Supplementary 
Note 2). Taking into account that two blobs at the same frame must 
belong to different individuals, we aggregate the probabilities of all 
fragments (computing probabilities P2 in Supplementary Note 2).  
We then take the fragment whose identity has highest certainty, 
assign it to its most likely identity and reset its probabilities as 1 
for the assigned identity and 0 for the rest. We then update the 
probabilities of all other fragments and repeat the process until all 
fragments have been assigned. The aggregation of information in 
this process, and the assignment from most certain to less certain 
(as opposed, for example, to a chronological assignment) greatly 
increases the accuracy of the final identities.

Matching identities across videos. To match the identities of the 
same individuals across different videos, we use the same proce-
dure as that to match different fragments in the same video when 
we build the references (see above and Supplementary Note 2). 
After finding the most likely assignment between the videos 
according to the probability P3, we compute the probability of 
the assignment as the probability for the most uncertain indi-
vidual. We reject the video whenever the probability of mistake 
is higher than 10−10. We include a validation of this procedure 
in a case in which we know the true identity of the individu-
als (Supplementary Fig. 2). For all the experiments shown in 
Figure 4, error probabilities were below this threshold, and we 
checked that the redundant assignments were consistent, as 
illustrated in Supplementary Figure 7 for the three videos of 
ten medaka fish.

Computer. We have tracked the videos on a laptop computer 
Toshiba Satellite R630 (processor Intel Core i5, 8 GB RAM, 
Windows 7 64 bits) or desktop computer (processor Intel Core 
i7-2600, Windows 7 64 bits, 8 GB RAM).

Animal rearing and handling. All procedures met with 
European guidelines for animal experiments under Directive 
86/609/EEC. Experimental procedures were approved by the 
Bioethics Subcommittee of Consejo Superior de Investigaciones 
Científicas (CSIC, Spain). For zebrafish (D. rerio), we used a stable 
line obtained in the lab using a pair of siblings obtained from ani-
mals bought at a local pet store, a WIK line we have inbred for five 
cycles to obtain close to isogenic animals and a nacre line17, a gift 
of G. Sumbre. For medaka (O. latipes) we obtained a laboratory 
line, gifted by P. Bovolenta. Fish were kept in the animal facility 
with a 14/10 light/dark cycle, in 5-l or 8-l transparent containers 
connected to a larger fish rack system with circulating water at 
26.5 ± 0.5 °C and at 7–7.5 pH. Fish densities were up to 1.25 fish 
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per liter. Fish were fed live artemia (Artemia salina) twice a day, 
and fish flakes (Sera Vipal) once a day. Water conditions were 
maintained using appropriate filters and were measured once a 
week in order to keep low levels of NH3, NO2

− and NO3
−. Fish 

larvae (D. rerio and O. latipes) were reared in 150-mm Petri dishes 
and were fed twice a day with dry food (Sera Micron) and liquid 
food (JBL Nobil Fluid). Petri dishes were cleaned, and half of 
the water was changed once a day. At day 15, larvae were moved 
to the animal facility. Mice (M. musculus) of the C57BL/6 and 
Agouti strains were kept in groups of two to five individuals in 
standard mouse cages under a 14/10 light cycle, with ad libitum 
access to food and water, and under constant humidity (55% ± 
10%) and temperature (22 ± 2 °C). Fruit flies (D. melanogaster) 
of the Canton-S strain were kept in tubes with ad libitum access  
to standard cornmeal food, under a 14/10 light cycle. An  
unidentified local species of ant was collected for behavioral experi 
ments and returned afterwards. M. structor were available from 
the animal facilities of the Research Center on Animal Cognition 
(CNRS - UPS Research Institute no. 5169), where they are under 
a 12/12 light/dark cycle and fed three times a week with regular 
ant-rearing food32.

Territoriality in zebrafish. We used adult fish of both sexes. Fish 
were acclimatized to the water of the behavioral setup 2 d before 
starting experiments. We recorded a group of five zebrafish in a 
47 × 26 × 2.5 cm3 behavioral tank (width × length × height) at 
27–28 °C. As the experiments were 3 h long, we took special care 
in maintaining the quality of water: the bottom of the behavio-
ral tank consisted of a transparent and permeable mesh, which 
facilitated a steady exchange of water with an acclimatized large 
external container. We recorded a 20-min video at the beginning 
of the experiment and another one 3 h later. We used idTracker to 
extract the trajectory of each individual and to relate the identi-
ties between the two videos. Figure 4a corresponds to intervals 
between minute 10 and minute 20 (left) and between minute 180 
and minute 190 of the experiment (right).

Leadership/followership hierarchies in medaka. We used 
adult fish of both sexes. Fish were acclimatized to the water 
of the behavioral setup 1 h before starting experiments and 
returned to the animal facilities every day after recording. We 
recorded a group of ten medaka fish in a tank of 50 × 50 ×  
2 cm3 (width × length × height), the same setup used in validation 
videos (see below). The fish entered the setup through a door at 
one side and swam freely for 30 min. Both social cohesion and 
activity decrease with time, so we analyzed only the first 3 min of 
the experiment. We measured the leadership/followership rela-
tionship between every pair of individuals i and j using delayed 
correlations in direction of motion26 as

C v t v ti k j k( ) ( ) ( )t t= 〈 + 〉•
 

where  v vi j•  is the scalar product of the unit velocity vectors for 
individuals i and j, respectively, τ is a time delay and 〈 〉 means 
average over the times tk in which the two individuals are sepa-
rated less than 10 cm and move faster than 3 cm/s (this speed cor-
responds to 2 pixels per frame in our videos and is the minimum 
for which we can measure the direction accurately). The scalar 
product measures the alignment of the velocity vectors, giving 1  
when they are perfectly aligned, −1 when antialigned and 0 when 

perpendicular to each other. The rationale for this analysis is that 
if a leading individual changes direction, the follower will copy 
this change after some delay. Therefore, we should find a better 
alignment after some delay. We scanned delays between −2 s and 
2 s and found the delay τm for which C(τ) is maximum. If C(τm) 
was higher than 0.6, we considered that one animal is follow-
ing the other, and for positive (negative) τm, individual i (j) is 
the follower of the pair. Assuming similar reaction times for all 
fish in the hierarchy, a large delay τm between two fish indicates 
that there is an intermediate fish between them in the hierar-
chy. Therefore, delay is a good proxy of position in the hierarchy. 
Higher vertical position of each individual in the hierarchy thus 
corresponds to stronger leadership computed as the average delay 
of each individual with respect to all other individuals for which 
leadership/followership is significant. We define the ‘leadership 
score’ between every pair as the delay τm between them (Fig. 4d). 
To compute the probability of being in front, we take into account 
all pairs of fish that have more than 100 frames in which both 
fish move faster than 3 cm/s and 

 
v vi j•  is higher than 0.9. Then 

we project positions of the two fish along a vector in the average 
direction of both fish (

 
v vi j+ ) and compute the proportion of 

frames in which the projected position of fish j is in front of the 
projected position of fish i.

Food-finding in zebrafish. We used adult fish of both sexes. 
Fish were acclimatized to the water of the behavioral setup 1 d  
before starting the experiments. Fish remained in this water for 
the whole duration of the experiment, a 100-l tank equipped with 
water acclimatizer that kept temperature at 26.5 ± 0.5 °C. We kept 
each group of four fish in a plastic box submerged in the larger 
tank, with holes to allow water circulation. Four groups of four 
fish take part in this experiment. In each trial, the four fish of a 
group enter the behavioral tank (50 × 50 × 2 cm3, width × length ×  
height) through a door in the middle of one side. Two pipette 
tips were held at the corners of the opposite side. One of the 
tips was covered by fish food (Sera Vipal flakes glued with agar 
to the pipette tip), and the other was clean. The tip with food 
was always at the same side in all trials for the same group (two 
groups were trained with food on the left, and the other two with 
food on the right). We allowed fish to swim freely in the setup for  
5 min. We performed 2–4 trials per day and a total of 28 trials:  
15 initial trials with food, 1 trial without food and mixing two 
groups previously trained to go to different places (animals were 
then unmixed using idTracker) and another 12 trials with food. 
We present the analysis of the last 12 trials (Fig. 4e–g). We used 
idTracker to follow the trajectory of each individual and to relate 
their identities across trials. We considered that an individual 
arrives to the food when it reaches the region at 8 cm from the 
tip with food.

Stability of ordering across trials (s). This score measures how 
consistent the ordering of a group is across several trials. First, 
we computed the average rank of each individual across all trials. 
Then, for each trial and each pair of individuals of the group, we 
added 1 if the individual with higher rank in the current trial also 
had higher average rank. We defined s as the resulting number 
divided by the number of trials and the number of pairs. Thus, 
s = 1 if all trials have identical ordering. For random ordering,  
s tends to 0.5 in the limit of a large number of trials.
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To compute the P value of a given experiment, we generated 
10,000 random repetitions of the experiment. To generate each 
random repetition, we permuted randomly the order of the indi-
viduals in each trial. Then we computed the P value as the pro-
portion of random repetitions whose value of s is equal or higher 
than the experimental one.

Setups for validation videos. This section describes the setups 
in which we have tested the tracking system. The conditions 
described here must not be understood as necessary (we have 
successfully tracked videos recorded by other researchers in dif-
ferent conditions; see the main text and Supplementary Note 1 
for a general description of the conditions required).

Unless indicated otherwise, videos have been recorded with a 
monochrome Basler A622f camera that has a resolution of 1,280 ×  
1,024 pixels. It is connected to a computer via Firewire (IEEE 
1394) and at full resolution has a frame rate around 25 f.p.s. (the 
frame rate increases when we decrease resolution using only one 
part of the camera’s sensor. We typically selected a region of inter-
est that fits tightly on the arena, so most videos were recorded at 
higher frame rates, see Supplementary Table 1). The videos were 
directly recorded on the computer’s hard disk, their length being 
limited only by the hard disk capacity (around 20 h of uncom-
pressed video on a 2-TB hard disk). The rest of the setup was as 
described below for each species.

Setup for zebrafish (D. rerio) and medaka fish (O. latipes). We 
used two different setups to record fish, the main difference being 
that for some videos we placed a transparent cover between the 
fish and the water surface to prevent the formation of ripples. We 
found that this cover is not necessary in general but convenient 
for large groups of the fastest-moving fish (i.e., zebrafish).

The setup with cover was used for all videos of zebrafish and 
medaka, except the one labeled ‘without cover’ (Supplementary 
Table 1). It consisted of a 50 × 50 × 2 cm3 (length × width × height) 
arena made from transparent Perspex. The height of the arena is 
enough for the fish to behave normally, with multiple fish eas-
ily crossing one on top of each other. This arena was completely 
closed, including a transparent roof, but was not watertight. It was 
fully submersed into a larger tank (90 × 120 × 20 cm3) equipped 
with a water acclimatizer to maintain healthy conditions for the 
fish. The arena was sustained by four legs at around 5 cm above the 
white floor of the larger tank so that the shadows of the fish were 
diffused, facilitating the segmentation. The camera was situated 
over the setup at a distance of about 1.2 m, pointing directly down-
wards and equipped with an objective of 16-mm focal length, 
Pentax C31634KP - C1614-M (KP). In these conditions, the setup 
covers around 950 × 950 pixels in the image. In order to have 
indirect and uniform illumination, we used six halogen floodlights 
(500 W each) pointing to the ceiling. A brown cardboard surface 
of 120 × 150 cm2 at the level of the camera prevented the light 
directly reflected on the ceiling to reach the setup so that illumi-
nation reaching the setup was indirect. Also, this brown surface 
projected a dim and uniform reflection on the water surface.

For the video of five zebrafish without cover, we used a 62 × 45 ×  
18 cm3 (length × width × height) translucent plastic box with 
no roof, filled with water up to 3 cm. We placed this box into 
the same larger tank equipped with water acclimatizer as in the 
previous case, keeping the floor of the plastic box at around 10 cm 

above the white floor of the larger tank. Illumination and camera 
disposition were the same as for the previous setup. In this case, 
the setup covered around 1,150 × 810 pixels in the image.

Setup for juvenile nacre zebrafish (D. rerio). We used a Petri 
dish of diameter 8.5 cm covered by a transparent Perspex lid and 
fully submerged in water. We placed a black plastic below the dish 
to increase contrast. Illumination and camera were the same as 
before, but with the camera closer to the setup.

Setup for zebrafish (D. rerio), recording from the side. We 
used a 25 × 3 × 25 cm3 (length × width × height) chamber inside  
a bigger tank made of glass. The camera was at 1 m of the  
setup, pointing horizontally toward the 25 × 25 cm2 face of  
the setup. Illumination was the same as for the previous setups. 
Black background gives the best contrast in this case, so we placed 
a black curtain over the rear side of the tank. We also placed a 
black curtain around the camera’s objective in order to obtain  
a dim and uniform reflection from the glass tank.

Setup for mice (M. musculus). The videos with four mice were 
recorded inside a translucent plastic cage of size 30 × 47 × 35 cm3 
(length × width × height). It has no roof, the walls being high 
enough to prevent the mice from escaping. Videos with two mice 
were recorded in a transparent plastic cage of size 18 × 32 × 20 cm3  
covered with a transparent Perspex roof to prevent the mice from 
escaping. In both cases, the bottom of the cage was covered with 
sawdust for comfort of the animals. Camera and illumination were 
the same as for the fish setup, with the camera at around 110 cm  
and 100 cm from the floor of the setup for the four-mice and  
two-mice videos, respectively.

Setup for flies (D. melanogaster) and locally collected ants. The 
floor of the arena was made of transparent Perspex. Walls and roof 
consisted of a Petri dish of diameter 5.5 cm placed upside down. 
The inside of the Petri dish was coated with Fluon (polytetrafluor-
oethylene, Sigma-Aldrich product number 665800). Fluon is slip-
pery for most insects, preventing them from climbing the walls and 
roof. With this configuration we could record walking flies with no 
need to cut their wings. The camera was placed 10 cm below the 
setup, pointing upwards. We used a Pentax C31635KP - C1614-
5M (KP) (focal length 16 mm), which can focus at such a short 
distance. The insects were therefore seen from below through the 
transparent floor against the white background of the Petri dish 
covered with Fluon. The setup was surrounded by white curtains, 
and illumination was provided by five halogen floodlights (500 W 
each) outside the curtains and pointing toward the inside.

Setup for ants (M. structor). The ants were inside a circular box of 
10-cm diameter with white floor and walls and without roof. We 
covered the walls with Fluon to prevent the ants from climbing them. 
It was located inside a white square box of 63 × 63 × 63 cm3 com-
posed of three white foam walls and a white curtain covering the 
fourth side. Lighting was provided by two small halogen lights held 
on the lateral walls and pointing to the white fabric. Video recording 
was made from above, using a Sony Handycam (HDR-CX740).

32.	 Bhatkar, A. & Whitcomb, W.H. Artificial diet for rearing various species of 
ants. Fla. Entomol. 53, 229–232 (1970).
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Supplementary Figure 4: Performance as a function of resolution

Supplementary Figure 4 : Performance as a function of resolution. Proportion of frames that are identi�ed
correctly (compared with manual validation) as a function of the resolution of the video, measured by the number of
pixels occupied by each individual in the images (averaged across individuals and for all frames of the video). We use
a single video for each species (a video with 5 zebra�sh, a video with 4 mice and a video with 8 fruit
ies) and reduce
the resolution by resampling the images. We resample by taking one everyn pixels, so that noise is not reduced by
the resampling. We �nd very little deterioration of the performance down to resolutions where each animal covers a
surface of 50 pixels, and then a sudden drop to random assignments
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